- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002100002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Verma, Saurabh (5)
-
Zhang, Zhi-Li (4)
-
Narayanan, Arvind (3)
-
Ramadan, Eman (2)
-
Babaie, Pariya (1)
-
Dayalan, Udhaya Kumar (1)
-
Fezeu, Rostand A. (1)
-
Hu, Xinyue (1)
-
Ji, Peiqi (1)
-
Li, Tao (1)
-
Liu, Qingxu (1)
-
Mehta, Rishabh (1)
-
Nowak, Robert (1)
-
Qian, Feng (1)
-
Shao, Shuai (1)
-
Zhang, Jifan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Label efficiency has become an increasingly important objective in deep learning applications. Active learning aims to reduce the number of labeled examples needed to train deep networks, but the empirical performance of active learning algorithms can vary dramatically across datasets and applications. It is difficult to know in advance which active learning strategy will perform well or best in a given application. To address this, we propose the first adaptive algorithm selection strategy for deep active learning. For any unlabeled dataset, our (meta) algorithm TAILOR (Thompson ActIve Learning algORithm selection) iteratively and adap- tively chooses among a set of candidate active learning algorithms. TAILOR uses novel reward functions aimed at gathering class-balanced examples. Extensive experiments in multi-class and multi-label applications demonstrate TAILOR ’s effectiveness in achieving accuracy comparable or better than that of the best of the candidate algorithms. Our implementation of TAILOR is open-sourced at https://github.com/jifanz/TAILOR.more » « less
-
Verma, Saurabh; Zhang, Zhi-Li (, ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD'19))
-
Narayanan, Arvind; Ramadan, Eman; Mehta, Rishabh; Hu, Xinyue; Liu, Qingxu; Fezeu, Rostand A.; Dayalan, Udhaya Kumar; Verma, Saurabh; Ji, Peiqi; Li, Tao; et al (, ACM IMC 2020)null (Ed.)
-
Narayanan, Arvind; Verma, Saurabh; Zhang, Zhi-Li (, World Wide Web)
-
Narayanan, Arvind; Verma, Saurabh; Ramadan, Eman; Babaie, Pariya; Zhang, Zhi-Li (, ACM SIGCOMM Computer Communication Review)
An official website of the United States government

Full Text Available